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A B S T R A C T

Objective: To review published empirical literature on the use of smartphone-based passive sensing for health
and wellbeing.
Material and methods: A systematic review of the English language literature was performed following PRISMA
guidelines. Papers indexed in computing, technology, and medical databases were included if they were em-
pirical, focused on health and/or wellbeing, involved the collection of data via smartphones, and described the
utilized technology as passive or requiring minimal user interaction.
Results: Thirty-five papers were included in the review. Studies were performed around the world, with samples
of up to 171 (median n= 15) representing individuals with bipolar disorder, schizophrenia, depression, older
adults, and the general population. The majority of studies used the Android operating system and an array of
smartphone sensors, most frequently capturing accelerometry, location, audio, and usage data. Captured data
were usually sent to a remote server for processing but were shared with participants in only 40% of studies.
Reported benefits of passive sensing included accurately detecting changes in status, behavior change through
feedback, and increased accountability in participants. Studies reported facing technical, methodological, and
privacy challenges.
Discussion: Studies in the nascent area of smartphone-based passive sensing for health and wellbeing demon-
strate promise and invite continued research and investment. Existing studies suffer from weaknesses in research
design, lack of feedback and clinical integration, and inadequate attention to privacy issues. Key re-
commendations relate to developing passive sensing strategies matching the problem at hand, using personalized
interventions, and addressing methodological and privacy challenges.
Conclusion: As evolving passive sensing technology presents new possibilities for health and wellbeing, addi-
tional research must address methodological, clinical integration, and privacy issues. Doing so depends on in-
terdisciplinary collaboration between informatics and clinical experts.

1. Introduction

Patients’ disease management and preventive health behaviors
benefit from the collection and tracking of health-related data, from
daily weights to calorie counts to pain scores [1,2]. Clinicians, too, are
increasingly interested in capturing patient-reported outcomes in-
cluding current status, symptoms and adverse events such as falls [3].
Patient, clinician, and collaborative use of data to make decisions is the
hallmark of an emerging era of personal or precision medicine, ushered
in by decades of advocacy [4] and a recent $215 million US investment
in precision medicine funding [5].

These trends are accompanied by the proliferation of personal

health information systems such as personal health records (PHR) sys-
tems [2], wearable consumer devices (e.g., activity trackers [6]), and
smartphone applications, which aid in capturing, storing, managing,
transmitting, interpreting, and acting on large volumes of patient data
[7].

The 1998 American College of Medical Informatics (ACMI) Summit
presciently identified wearable computing systems as a way to achieve
the “audacious goal” of empowering individuals via biomedical infor-
matics [8]. Wearable, portable, or mobile computing permits continual
passive sensing: the capture of data about a person without extra effort
on their part. The concept of passive sensing comes from extensive
research conducted in the field of ubiquitous computing, where it is also
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called ‘context-aware computing’ [9]. Two main advantages of passive
sensing over traditional data collection methods are that it is less in-
trusive and enables just-in-time adaptive interventions based on data
captured and processed in situ [10]. Passive sensing for health and
wellbeing refers to various methods to collect data from patients or lay
users in situ without requiring their direct interaction with any artifact
or person (see Appendix A1 for definition of this and related terms).
Users may be able to turn sensing on and off, but need not make any
input to produce data collection. The combined unobtrusiveness and
pervasiveness of passive sensing makes it possible to gather data at any
time, longitudinally, and with little stigma or additional burden on
patients’ awareness, memory, or behavior. Such benefits are especially
useful in the domains of mental health and mental illness, including
dementia, schizophrenia, and mood disorders, where data may be
sensitive, stigmatized, and subject to distortion. Indeed, passive sensing
has been argued by mental health researchers as a promising compo-
nent in ambulatory assessment [11].

Passive sensing is not new but the related technology has evolved:
for instance, physical activity, sleep, and cardiovascular disease re-
search has employed passive sensing for decades, using an evolving
suite of technologies from pedometers, polysomnography, and cardio-
vascular implantable electronic devices to commercial wristband ac-
tivity trackers, smartwatches, and smartphones [12–15]. Mobile health
technologies that can passively collect information have been promoted
in the medical literature as a way to reduce burden and improve care
for healthcare consumers [16].

Smartphones, in particular, are a novel technology for passive sen-
sing described in the literature but not systematically reviewed [17,18].
Smartphones are unique because of their increasing computational
power and pervasiveness. As of 2015, 68% of US adults owned smart-
phones, approaching the rate of desktop or laptop computer ownership
(73%) [19]. Even among older adults, smartphone ownership has
doubled from 18% to 42% between 2013 and 2016 [20]. Smartphones
are used for various activities, including for health-related purposes, by
the majority of owners across all age groups [21]. Because a smart-
phone is ubiquitous in the daily life of so many in the US and globally,
sensing via smartphone may be less obtrusive—though perhaps no less
intrusive—than specialized wearable medical or fitness devices.

Smartphones are of further interest for passive sensing because they
combine multiple sensors (Apple’s iPhone 7 has six [22], while the
Samsung Galaxy S8 has eleven [23]). They also capture behavioral data
such as call, texting, or social media activity; have advanced Internet,
storage, and processing capabilities; and permit the creation of personal
profiles and personalized, just-in-time visualizations and alerts to users
and their support network [24]. Smartphones can be used to passively
capture data such as speech characteristics, location, and activity,
which can be interpreted to assess depression, sleep, or loneliness.
These smartphone sensors have been used in multiple commercial ap-
plications, ranging from car navigation to fitness tracking applications
(see Appendix A2 for a fuller list of smartphone sensors and examples of
related commercial applications).

Although several reviews have examined the use of portable activity
sensing devices [6] and the use of smartphones generally for health and
wellbeing [25–27], to our knowledge the growing body of studies of
smartphone-based passive sensing has not been systematically re-
viewed. The goal of this study was to address this gap in the biomedical
informatics literature.

2. Objectives

The main study objective was to review published literature on
smartphone-based passive sensing for health and wellbeing. Specific
research questions were:

• To which health-related domains and populations has passive sen-
sing via smartphones been applied?

• What data collection approaches have been used for passive sensing
via smartphones?

• How were sensed data processed and used after acquisition?

• What are the benefits of passive sensing via smartphones?

• What are the challenges, such as privacy issues, of passive sensing
via smartphones?

3. Methods

We followed Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [28] to perform a systematic re-
view of the literature on smartphone-based passive sensing for health
and wellbeing.

3.1. Type of studies

Studies were included if they: (1) were empirical; (2) primarily fo-
cused on health and/or wellbeing of participants; (3) involved the
collection of data via smartphones; and (4) described the utilized
technology as passive or requiring minimal user interaction.

We included health-related studies of people with or without dis-
eases. “Smartphone” was defined as any phone equipped with a mobile
operating system—Android, Apple iOS, Symbian OS, Windows
Mobile—on which applications can be installed to capture data from
the phone’s sensors. Passive was defined as data being collected without
user input beyond starting the application, apart from any data actively
collected by the study for validation purposes.

Studies were excluded if they used wearable devices paired with a
phone because these did not use the smartphone’s sensors. Studies that
required participants to attach the smartphone to their body, clothing,
or a permanent fixture (e.g., furniture) were also excluded because they
did not use the device’s primary telecommunication, display, or input
functions; for example, most gait-tracking applications were excluded
as they often used the phone as a pure sensor device affixed to the
waistline.

We included English-language studies published any time through
January 2017, the last month studied. Peer-reviewed journal papers
and conference proceedings papers were included; extended abstracts
were excluded.

3.2. Search strategy for the identification of studies

We performed two searches in domain-specific databases re-
presenting computing and technology (ACM) and medicine (MEDLINE),
followed by cross-domain database searches in Web of Science. This
was followed by a cited reference search, whose findings were dupli-
cated in the database search. Queries were tailored to each database
(Table 1).

4. Results

We included in the full review a total of 35 publications [29–63],
summarized in Tables 2–5. These were selected from 3246 returned
results (Fig. 1), with the majority of references discarded for irrelevance
(e.g., chemistry research), absence of sensor data (e.g., proof of concept
papers), and use of wearable devices. Several studies were excluded
because they collected data only under controlled laboratory condi-
tions, for example, requiring participants to sit and stand repeatedly to
test a motion sensor.

Seventeen studies (49%) were performed by US research teams and
14 (40%) by Europeans. Other studies originated in China [33,49],
Korea [48], and Mexico [58].

Mental health was the most common application domain for studies
using passive sensing on smartphones, with 18 (51%) studies on mental
health: five (14%) on bipolar disorder; five (14%) on depression; and
three (9%) on schizophrenia. Other domains included sleep (6; 17%)
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and general health (4; 11%) (see Fig. 2).
Seven studies integrated passive sensing in behavior change inter-

ventions [38,52,54,55,58,60,61], such as personalized feedback to
promote exercise and healthy eating [55]. Other studies used passive
sensing to demonstrate the ability to capture or monitor data related to
health and wellbeing.

Study sample sizes ranged from 5 to 171, with a mean of
23.1 ± 27.9 participants and a median of 15. Three studies had open
enrollment, meaning that participants downloaded an application from
an application portal (e.g., Apple AppStore, Google Play Store)
[39,47,61]; these studies were characterized by high dropout rates.

Twenty-four studies reported a fixed study length, ranging from five
days to a year, with a mean of 53.5 ± 71 days and a median of 30
[29,32–35,37,38,40,41,43–46,49,50,53–60,63]. Eleven others reported
variable between-subject study durations [30–32,39,42,
47,48,51,52,61,62], citing reasons such as rolling enrollment, partici-
pant dropout, and having no defined study length.

Nine studies included participants with a clinically-diagnosed
mental health condition [29,34,36,38,41,44,45,53,62], two studied
adults over 60 years old [58,60], one enrolled people with chronic heart
failure [31], and one studied smokers [52]. Nine studies enrolled uni-
versity students [30,32,35,40,42,46,56,59,63] and another three

Table 1
Queries performed in four research databases, results returned, and papers retained.

Database Query Results
returned

Unique papers
retained

ACM Digital Library – Association for
Computing Machinery

+(health* wellbeing medicine hospital clinic nursing)+ (mobile smartphone iphone
android)+ (detect* sensing sensor GPS Accelerometer microphone “global positioning system”)

1008 11

MEDLINE (PubMed) (detector OR detection OR sensing OR sensor OR GPS OR Accelerometer OR microphone OR
“global positioning system”) and (smartphone or “Mobile phone” or iphone OR android OR
“mobile sensor”)

1366 14

Web of Science ((detector OR detection OR sensing OR sensor OR GPS OR Accelerometer OR microphone OR
“global positioning system”) and (smartphone or “Mobile phone” or iphone OR android OR
“mobile sensor”) AND (health setmimus* OR wellbeing OR medicine OR hospital OR clinic OR
nursing))

1318 10

ACM Digital Library
Jan 2005 - Jan 2017

1,008 Citation(s)

3,246 Non-Duplicate
Citations Screened

Inclusion/Exclusion
Criteria Applied

PubMed
Jan 2005 - Jan 2017

1,366 Citation(s)

Web of Science
Jan 2005 - Jan 2017

1,318 Citation(s)

3,093 Articles Excluded
After Title/Abstract Screen

153 Articles Retrieved

Inclusion/Exclusion
Criteria Applied

1 Articles Excluded
During Data Extraction

117 Articles Excluded
After Full Text Screen

35 Articles Included

Fig. 1. PRISMA diagram of the literature review process.
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recruited participants on university campuses [49,54,55]. Other studies
included participants from various backgrounds [37,39,43,47,48,
50,51,57,61].

Thirty (86%) of the reviewed studies were conducted between 2014
and January 2017 (cf. Fig. 3). During each of these three years, mental
health studies made up more than 40% of the publications.

4.1. Summary of reviewed papers

See Tables 2–5.

4.2. Sensors used

As seen in Table 6, studies captured data from a variety of smart-
phone physical sensors and device analytics. The most used physical
sensors were the accelerometer (25 studies), Global Positioning System
sensor (GPS; 22 studies), light sensor (10 studies), and microphone (9
studies). Studies also collected data on device analytics, including call
logs (14 studies), device activity (defined as screen on/off and device
on/off; 11 studies), and Short Message Service (SMS) patterns (fre-
quency and/or recipients; 11 studies).

Most studies combined multiple sensors, an emerging strategy as
phones have become more energy efficient and the overhead of cap-
turing data has diminished. Eleven studies recorded input from five or
more sensors [30,32–36,50,59,61–63], among which seven were
mental health studies. Studies with more than three sensors usually
relied on machine learning prediction models to process and interpret

data; for example, one study combined the accelerometer as a proxy of
physical activity and sleep, the microphone as a proxy of social activity,
and GPS for location changes to infer daily stress levels [35]. Ten stu-
dies recorded data from only one sensor, either the accelerometer or
GPS [37,41,43,46,47,51–53,56,60].

4.3. Operating systems

Thirty-one studies (89%) used the Android operating system (OS),
compared to two using Apple iOS [37,51], and one using the now-de-
funct Symbian OS [38]. This could be explained by the access granted
on Android phones, making it easier for data capture, communication,
and processing tasks to run in the background. In contrast, Apple’s iOS
made it harder for applications to access data from other applications
without explicit user permission. The operating system could not be
ascertained for one study [46].

4.4. Validation measures

To validate the interpretation of sensed data, studies employed
various traditional measures or other assessments of “ground truth,”
hereafter referred to as validation measures. Most studies then reported
the correlation between validation measures and the interpretation
derived from processing sensor data. Studies of depression used the
PHQ-8 or PHQ-9 self-report instruments. Studies of bipolar disorder
primarily used clinician assessments based on a battery of scales
[34,44,45,53], although one used a self-report questionnaire [29]. For

Depression [38, 39, 56, 
57, 61]

Bipolar disorder [29, 34, 
44, 45, 53]

General mental health 
[32, 35, 46, 49, 63]

Schizophrenia [36, 41, 
62] 

Sleep [30, 33, 37, 40, 
50, 51]

General health and 
wellbeing [42, 47, 54, 

55] 

Addiction [48, 52]

Geriatrics [58, 60]

Stress [43, 59]

Chronic heart failure 
[31] 

Other

6 (17%)

5 (14%)

5 (14%)

5 (14%)

3 (9%)

4 (11%)

7 (20%) 2 (6%)

2 (6%)

1 (3%)

2 (6%)

Fig. 2. Domains of the reviewed papers.
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Fig. 3. Reviewed papers by year of publication (Note:
January 2017 is merged with 2016).
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Table 2
Summary of mental health studies, ordered by condition then year of publication.

Condition Author (Year)
location

Study purpose Principal findings Sensors used Sample size & type Study length
(Days)

Bipolar disorder Osmani et al.
(2013) [53]
Austria

Correlate physical activity with
symptoms of bipolar disorder

Significant correlations between activity
levels and bipolar states for some
individual patients but not for others

• Accelerometer 5 Patients with
bipolar disorder

90

Bipolar disorder Grünerbl et al.
(2014) [45]
Austria

Detect state and state change for
people with bipolar disorder

Detection of state change with 96%
precision and 94% recall; recognition of
state with 80% accuracy

• Accelerometer

• GPS
12 Patients with
bipolar disorder

84

Bipolar disorder Grünerbl et al.
(2015) [44]
Austria

Detect state and state change for
people with bipolar disorder

Detection of state change with 97%
precision and 97% recall; recognition of
state with a 76% accuracy

• Accelerometer

• Call logs

• GPS

• Microphone

10 Patients with
bipolar disorder

84

Bipolar disorder Abdullah et al.
(2016) [29] USA

Predict scores on the social
rhythm metric (SRM) scale among
people with bipolar disorder
using generalized and
personalized models

Prediction of states with 85% precision
and 86% recall. Social rhythm metric
score inferred with 0.92 root-mean-
square error for personalized models and
1.40 for the generalized model

• Accelerometer

• Call logs

• Light sensor

• SMS patterns

7 Patients with
bipolar disorder

28

Bipolar disorder Beiwinkel et al.
(2016) [34]
Germany

Detect features to be used for the
monitoring of bipolar disorder

Significant correlations between subset
smartphone sensor data on one hand and
depressive and manic symptoms on the
other, but none above clinical thresholds

• Accelerometer

• Antenna

• Call logs

• Device activity

• GPS

• SMS patterns

13 Patients with
bipolar disorder

356

Depression Burns et al.
(2011) [38] USA

Reduce depressive symptoms
among people with major
depressive disorder

Prediction of depression from sensor data
no better than chance

• Accelerometer

• Bluetooth

• GPS

• Light sensor

8 People with major
depressive disorder

56

Depression Canzian et al.
(2015) [39] UK

Predict depressive symptoms
from location data

• Prediction of depression with > 75%
sensitivity and specificity, using a
support vector machine classifier on a
personalized model with a time span
of 8 days or more

• Prediction of depression with > 60%
sensitivity and specificity, using a
support vector machine classifier on a
generalized model with a time span
of 8 days or more

• Antenna

• GPS
28 General sample 71a

Depression Saeb et al. (2015)
[57] USA

Predict depressive symptoms
from location and phone usage
data

Prediction of depression with 86%
accuracy for the best feature, using a
logistic regression classifier.

• Device activity

• GPS
28 General sample 14

Depression Saeb et al. (2016)
[56] USA

Correlate location data with
depression symptoms

• Significant negative correlations
between GPS features (location
variance, entropy, circadian
movement) and depression

• Relation between GPS features and
depression more evident on
weekends, when participants are not
constrained by work or school
schedule

• GPS 48 University
students

70

Depression Wahle et al.
(2016) [61]
Switzerland

Predict depression from
smartphone data, using an
application delivering context-
sensitive cognitive behavioral
therapy-based micro-
interventions

• Prediction of depression with 61%
accuracy using a support vector
machine classifier

• Prediction of depression with 59%
accuracy using a random forest
classifier

• Accelerometer

• Calendar

• Call logs

• Device activity

• GPS

• SMS patterns

36 General sample > 14

Schizophrenia Ben-Zeev et al.
(2016) [36] USA

Examine the feasibility and
acceptance of passive sensing
among people with schizophrenia

People with schizophrenia open to
sensing, a third expressed concern about
privacy, two-thirds expressed interest in
receiving feedback

• Accelerometer

• Bluetooth

• GPS

• Light sensor

• Microphone

20 Inpatients and
outpatients with
schizophrenia

10.15a

Schizophrenia Difrancesco et al.
(2016) [41] UK

Detect out-of-home activities
among people with schizophrenia
in order to infer social functioning

Detection of out-of-home activity with
precision between 72% and 95%, and
recall between 69% and 77% for the best
method

• GPS 5 Patients with
schizophrenia

5

Schizophrenia Wang et al.
(2016) [62] USA

Correlate smartphone data with
schizophrenia

Significant correlation between ground
truth and predicted mental health status
scores, using random forest regression

• Accelerometer

• Application usage

• Call logs

• Device activity

• GPS

• Light sensor

• Microphone

• SMS patterns

21 Patients with
schizophrenia

133.76a

(continued on next page)
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Table 2 (continued)

Condition Author (Year)
location

Study purpose Principal findings Sensors used Sample size & type Study length
(Days)

General mental
health

Ma et al. (2014)
[49] China

Predict mood from smartphone
data

Prediction of mood with an accuracy of
70% for the model comprised of sensor
and social features, using Markov-Chain
Monte Carlo methods

• Accelerometer

• Activity

• Call logs

• SMS patterns

15 University
students and non-
students

30

General mental
health

Wang et al.
(2014) [63] USA

Correlate smartphone data with
depressive symptoms among
college students

• Significant negative correlation
between sleep and depression

• Significant negative correlations
between conversation frequency and
duration and depression

• Accelerometer

• Application usage

• Bluetooth

• Call logs

• GPS

• Light sensor

• Microphone

• SMS patterns

48 University
students

70

General mental
health

Ben-Zeev et al.
(2015) [35] USA

Evaluate the prediction of daily
stress levels, mental health status
from smartphone data

• Sleep duration and mobility
associated with daily stress levels

• Speech duration, geospatial activity,
sleep duration, kinesthetic activity
associated with mental health status

• Accelerometer

• Device activity

• GPS

• Light sensor

• Microphone

47 University
students

70

General mental
health

Asselbergs et al.
(2016) [32]
Netherlands

Predict mood from smartphone
data

Prediction of 55% to 76% of mood scores
using personalized linear regression

• Accelerometer

• Application usage

• Call logs

• Device activity

• SMS patterns

27 University
students

35.5a

General mental
health

Huang et al.
(2016) [46] USA

Correlate places visited by
university students with their
social anxiety

Significant negative correlation between
time spent at religious locations and
reported social anxiety

• GPS 16 University
students

10

GPS: Global Positioning System; SMS: Short Message Service.
a Average duration of subject participation; precision refers to positive predictive value; recall refers to sensitivity, or hit rate. Patients: participants receiving professional care.

Table 3
Summary of sleep studies, ordered by year of publication.

Author (Year)
location

Study purpose Principal findings Sensors used Sample size &
type

Study length
(Days)

Bai et al. (2012) [33]
China

Predict sleep quality from smartphone
data collected during the day

Prediction of sleep quality with 78% accuracy, using
a factor graph model

• Accelerometer

• Call logs

• GPS

• Light sensor

• Microphone

• SMS patterns

15 Not
specified

30

Natale et al. (2012)
[51] Italy

Compare commercial sleep monitoring
device data with three smartphone
accelerometer algorithms for assessing
sleep

• No statistical difference for total sleep time
between the best performing algorithm and the
commercial monitoring device

• Agreement rate on sleep-wake discrimination of
90% between the best performing algorithm and
the commercial monitoring device

• Accelerometer 13 General
sample

4.8a

Chen et al. (2013)
[40] USA

Compare an application detecting sleep
from smartphone data with three other
sleep detection methods

• Better user experience and lower perceived
intrusiveness for the passive sensing application
than for the other sleep detection methods

• Greatest error in the estimation of sleep duration
(+/− 43min) compared to the other sleep
detection methods

• Accelerometer

• Device activity

• Light sensor

• Microphone

8 University
students

7

Abdullah et al. (2014)
[30] USA

Predict sleep time, duration, and
deprivation from smartphone data

Social jetlag, sleep inertia, and sleep debt can be
estimated from sensor data

• Application usage

• Browser history

• Call logs

• Device activity

• SMS patterns

9 University
students

91.1a

Min et al. (2014) [50]
USA

Detect sleep and sleep quality in natural
settings

• Detection of sleep with 94% accuracy using a
Bayesian network with feature selection model
for the individual model

• Detection of sleep quality with 84% accuracy
using a Bayesian network/feature selection
individual model, and 81% accuracy using a
Bayesian network/feature selection global model

• Accelerometer

• Application usage

• Device activity

• Light sensor

• Microphone

• Proximity sensor

27 General
sample

30

Bhat et al. (2015)
[37] USA

Compare a commercial phone sleep
monitoring application for iPhone with in-
laboratory polysomnography

Detection of sleep by the application with 90%
sensitivity and 50% specificity

• Accelerometer 20 General
sample

6

GPS: Global Positioning System; SMS: Short Message Service.
a Average duration of subject participation.

V.P. Cornet, R.J. Holden Journal of Biomedical Informatics 77 (2018) 120–132

125



sleep studies, smartphone sensor-based results were compared to those
from a medical activity tracker [51], a popular consumer activity
tracker [40], laboratory-based polysomnography [37], and self-report
questionnaires or sleep diaries [30,33,50]. Other studies used instru-
ments relevant to their application domain, including questionnaires,

ecological momentary assessment (EMA), and professional assessments
(e.g., for bipolar disorder [44,45,53]). Studies differed in the timing of
validation measures, from one-time measures to seven measures per
day (e.g., [59]) or pre-post assessments.

Table 4
Summary of general health and wellbeing studies, ordered by year of publication.

Author (Year) Study purpose Principal findings Sensors used Sample size & type Study length
(Days)

Rabbi et al. (2015a)
[55] USA

Evaluate the generation of recommendations
for calorie loss from accelerometer and location
data, using personalized vs. generic
recommendations

Group with personalized suggestions
performed better on physical activity and
dietary behavior than control

• Accelerometer

• GPS
17 University
students and non-
students

21

Rabbi et al. (2015b)
[54] USA

Evaluate the generation of recommendations
for calorie loss from accelerometer and location
data

Significant increase in physical activity and
decrease in calorie consumption when
participants received personalized
recommendations

• Accelerometer

• GPS
16 University
students and non-
students

98

Eskes et al. (2016)
[42] Netherlands

Predict sociability from smartphone data Weak relationship between smartphone use
and overall sociability assessments

• Application usage

• Bluetooth

• Call logs

• GPS

10 University
students

11.4a

Kelly et al. (2017)
[47] UK

Predict health status from accelerometer data Prediction of health status with a mean
absolute error of 11.7, using a support
vector machine classifier

• Accelerometer 171 General
sample

4.8a

GPS: Global Positioning System.
a Average duration of subject participation.

Table 5
Summary of studies in other domains, ordered by condition then year of publication.

Condition Author (Year) Study purpose Principal findings Sensors used Sample size &
type

Study length
(Days)

Addiction Lee et al. (2014)
[48] Korea

Correlate application use with
smartphone addiction

Significant positive correlation between
smartphone daily use time and the Korean
smartphone addiction scale

• Application usage

• GPS
14 General
sample

> 7

Addiction Naughton et al.
(2016) [52] UK

Evaluate a just-in-time
intervention using location data to
send timely messages to smokers

Feasible but some non-compliance in
reporting smoking

• GPS 13 Smokers 34a

Chronic heart
failure

Aranki et al.
(2016) [31] USA

Sense physical activity among
people with chronic heart failure
for transmission to doctors

Feasible despite technological and usability
challenges

• Accelerometer

• Call logs

• GPS

• Proximity sensor

15 People with
chronic heart
failure

< 90

Geriatrics Vathsangam et al.
(2014) [60] USA

Evaluate the detection of physical
activity from accelerometer data
in order to encourage older adults
to exercise

Participants appreciated the utility of the
application but would like more feedback

• Accelerometer 8 Older adults 21

Geriatrics Sanchez et al.
(2015) [58]
Mexico

Predict loneliness in older adults
to send them positive messages

Correct classification of family loneliness and
spousal loneliness for > 80% of participants,
with the average time spent out of home and
total of times out of home found to be the most
important attributes

• Call logs

• GPS

• SMS patterns

12 Older adults 7

Stress Stutz et al. (2015)
[59] Austria

Correlate smartphone data with
stress

Significant correlations between perceived
stress scores (daily and weekly averages) and
the sensed features, with noisiness (positive
correlation), number of time device is
powered on (positive), and changes in light
(positive) among the most significant features

• Accelerometer

• Application usage

• Call logs

• Device activity

• Light sensor

• Microphone

• SMS patterns

15 University
students

14

Stress Garcia-Ceja et al.
(2016) [43] Italy

Detect and predict stress from
accelerometer data

• Prediction of stress with 95% accuracy
using the best similar-user model (decision
tree)

• Prediction of stress with 95% accuracy
using the best similar-user models
(decision tree and Naïve Bayes)

• Prediction of stress with 87% accuracy
using the best general model (decision
tree)

• Accelerometer 30 Company
employees

40

GPS: Global Positioning System; SMS: Short Message Service.
a Average enrollment length among participants, Older adults: people 60 years old or older.
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4.5. Data processing and use

The software application used in most studies (21; 60%) commu-
nicated with a remote server to save sensed data to a database for
processing and, at times, within-study feedback to participants. In eight
studies, data were scrambled for privacy on the phone (via hashing or
anonymization of audio data) before being transmitted to the server
[29,30,34–36,57,62,63].

Server communication was not used in 10 studies (29%)
[35,37,44,45,51,53–56,60]. Five studies produced feedback locally
[37,47,54,55,60], without any server communication; for example,
health status was processed directly on the phone in one study on
predicting health status from accelerometry [47]. Three studies per-
formed complex calculations—data classification or prediction mod-
eling—directly on the smartphone [37,54,55]; for example, sensed
geographical locations were processed on the device to cluster physical
activities [54,55]. In four studies (11%) describing post-study proces-
sing, we could not determine whether a remote server was used
[30,40,43,61].

4.5.1. Feedback to participants
Fourteen studies (40%) reported providing some sort of feedback to

study participants [29,31,33,37,38,40,47–49,52,54,55,58,61]. The ap-
plications in five studies displayed graphs representing mental health
status [29,38], sleep data [37], physical activity [47], and the mobile
applications participants used the most [48]. Two studies provided
prepared motivational messages to participants based on collected data
[31,58] and three displayed tailored messages [52,54,55], e.g., “25% of
the time you smoke [is when] you are working” [52]. Three studies
showed participants text descriptions of their sensed data and/or
sensor-predicted status, without encouraging behavior change
[33,40,49]. As an example of presenting both data and data-driven
interventions, one study displayed depression data as text and delivered
micro cognitive behavioral therapy modules based on the data [61]. A
study published in 2011 only provided a text string depicting predicted
depression status on the smartphone, with more detailed graphical
feedback available on a companion website [38]. Two studies allowed
clinicians to view their patients’ data through a separate web portal
[31,48]. Five studies computed the data locally [37,47,54,55,60] and
provided feedback on the phone, whereas the rest required server
communication to provide feedback to participants.

4.5.2. Correlation with validation measures
In the vast majority of studies, data were processed and correlated

to validation measures, to test the validity of interpretations or pre-
dictions made through passive sensing. In seven studies, the correlation
was performed while the study was ongoing [31,37,49,54,55,60,61]
and after study completion in 23 studies. Data processing used different
families of algorithms for interpreting or predicting the participant’s
status. The most popular were Support Vector Machine
[29,31,39,47,58,61], naïve Bayes classifiers [43–45,58], decision trees
[38,43,50,62], random forests [59,61], and linear regression
[30,46,57,59]. Other prediction methods include Bayesian networks

[50] and logistic regression [57]. Five studies compared several ma-
chine learning methods to predict participant status [43,50,58,59,61].
Some studies just performed correlation analyses without prediction of
the participant’s status, i.e. they did not establish a mathematical re-
lationship between the sensor data and the validation measures [e.g.,
[39,48,53,56,63]].

4.6. Benefits of passive sensing and related findings

Nearly all studies demonstrated or otherwise reported benefits of
passive sensing using smartphones. In mental health studies, findings
included significant correlations with validation measures and suc-
cessful prediction models for some or all the studied variables
[29,34,44,45,53,56,57,61–63]. For example, two bipolar disorder stu-
dies reported precision and recall (or hit rate) over 94% for bipolar
state change detection [44,45], and one study predicted bipolar states
with precision and recall over 85% [29]. Sleep studies reported suffi-
cient precision, defined as the detection of sleep duration within a one-
hour margin [30,40]. These results illustrate smartphone capability to
deliver usable information that can be integrated into behavior change
interventions for health and wellbeing.

Seven studies demonstrated individualized or similar-user models as
better for predicting participant status compared to generalized models
[39,43–45,54,55,61]. Two other studies argued for using personal
models on the basis that the relationship between sensed data and be-
havior is individual-specific [35,49].

Six studies conducted interviews or usability testing with their
participants [36,38,40,52,55,60]. Participants appreciated the ease of
use of the system [36,60] and that it did not interfere with their ev-
eryday life [36,40]. Participants valued receiving feedback [38,52,60]
as long as it was understandable (i.e., reported in a way target users
could understand; [40,60]), timely [52], and relevant to their lifestyle
[55].

Studies also highlighted the objectivity of smartphone sensor mea-
surements [31,34,36,39,41,42,44,45,49,53], the ability to take fre-
quent measurements [29,34,37,38,41,55,57], the possibility of per-
forming just-in-time and adaptive interventions [52,55,61], and
reduced burden for patients [29–31,35,53]. Authors also mentioned the
ubiquity of smartphones, the affordability of the interventions, and
non-invasiveness.

4.7. Challenges of passive sensing

The apparent ease of deploying passive sensing campaigns for
health and wellbeing was counterbalanced by several reported chal-
lenges. Although not systematically reported across studies, these
challenges could be divided into three categories: technological,
methodological, and privacy issues.

4.7.1. Technological challenges
In two studies, authors reported battery drainage concerns [31,38].

Five studies mentioned the lack of sensor precision [38,40,41,52,60];
for example, location data were sometimes inaccurate, leading to

Table 6
Sensors used in reviewed studies.

Physical sensor Papers Device analytics Papers

Accelerometer [29,31–38,40,43–45,47,49–51,53–55,59–63] Call logs [29–34,42,44,49,58,59,61–63]
GPS [31,33–36,38,39,41,42,44–46,48,52,54–58,61–63] Device activity [30–32,34,35,40,50,57,59,61,62]
Light sensor [29,33,35,36,38,40,50,59,62,63] SMS patterns [29,30,32–34,49,58,59,61–63]
Microphone [33,35,36,40,44,50,59,62,63] Application usage [30,32,42,48,50,59,62,63]
Bluetooth [36,38,42,63] Browser history [30]
Antenna [34,39] Calendar [61]
Proximity sensor [31,50]
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participant frustration [52]. Three studies reported not being able to
access application data that would have been useful in their prediction
model [42,48,49].

4.7.2. Methodological challenges
Eleven studies noted concerns about generalizability due to low

sample size [44,45,56–59], possible sample bias [32,35,46,48], and
variability in the study data sample [34,35]. Seven studies reported a
limited or null relationship between passively sensed data and valida-
tion measures [34,38,42,46,49,50,61]. Problems encountered include
low variability of symptoms in the sample [34,38] (e.g., few manic
episodes occurring among bipolar participants during the study period
[34]), noisy sensor data [38], technical problems leading to unusable
data [38,42], trying to predict personal phenomena with generalized
models (e.g., for mood [49]), difficulty assessing “ground truth” [50],
and biased samples [46]. Some studies called for more data labeling
from participants, for example by having participants answer more
frequent depression questionnaires [38,56], to better train the predic-
tion models. Studies also reported participants disabling the phone’s
sensing capabilities [53] and not carrying their phones [36,41,53].

4.7.3. Privacy issues
Privacy issues were mentioned in 20 papers. Most papers did not

thoroughly discuss privacy issues, but merely described their methods
for protecting data privacy, which included the following:

• secure communication with external servers [34–36,38,39,57,
62,63],

• anonymization of data [30,34,44,45,57,59,62,63],

• scrambling audio [29,35,36,44],

• local storage/processing of data as opposed to sending data to an
outside server [44,45,54].

In one instance, study participants mentioned that they would not
grant access to as much information if the passive sensing application
were a commercial product rather than coming from a university [52].

Fifteen studies made no explicit mention of privacy or a plan for
privacy protection [33,37,41,43,46–49,51,53,55,56,58,60,61].

5. Discussion

The reviewed studies illustrate the potential of passive sensing via
smartphones in the domain of health and wellbeing. Indeed, this review
reveals the broad use of smartphone-based passive sensing across ap-
plication domains, with particular representation of mental health and
sleep, two areas where passive sensing may be useful as a way to re-
place or supplement self-report. A number of passive sensing strategies
for data collection, processing, and use were demonstrated, offering
informaticians and healthcare researchers several options for future
passive sensing projects, including interesting emerging methods such
as machine learning or just-in-time processing and feedback. The re-
viewed studies generally demonstrated feasibility and validity of
smartphone-based passive sensing, the latter evidenced by significant
associations between traditional and sensing-based assessments. Studies
also concluded that passive sensing was more accurate and less in-
trusive compared to self-report measures. However, additional work
remains in several areas, including evaluating the health benefits of
interventions using smartphone-based passive sensing, integrating
passive sensing in clinical care programs, and addressing important
implementation issues such as privacy and technology acceptance.

Using mobile phones for passive sensing is encouraging not only
because of the potential power of continual monitoring of and feedback
on health-related data but also because of the non-intrusiveness of
passive sensing. A smartphone-based passive sensing approach for
health and wellbeing is well aligned with the concept of minimally
disruptive medicine, defined as “a patient-centered approach to care

that focuses on achieving patient goals for life and health while im-
posing the smallest possible treatment burden on patients’ lives”
[64–66]. Passive sensing can ease—or, minimally, not add to—“work
that is delegated to patients and their families” [67], by facilitating or
automating difficult tasks such as self-monitoring or daily logging [68].
It can also positively affect health outcomes when used as a component
of behavioral intervention technologies [69]. Although passive data
collection raises other ethical issues, it is less likely to disrupt a person’s
thoughts and activities than diaries, paper questionnaires, telephonic or
electronic prompts for data, and similar methods [70,71]. Mobile
phones, in particular, may be less disruptive because they are often
already embedded in people’s routines and have broader market pe-
netration than wearable activity trackers or medical devices (e.g.,
Holter monitors).

Smartphones are also useful as a means for capturing passive data
because they capture user-specific social and personal data, collected
when users make calls, write and send texts, manage contacts, or are
simply present in an environment. They contain a multitude of sensors,
which can be used simultaneously, provided sufficient battery power.
Smartphones have other advantages such as their many functionalities
(calling, data service, settings control), Internet connectivity, advanced
processors, and high-resolution display. However, research needs to be
done to test the hypotheses that, compared to other measurement ap-
proaches, smartphone-based passive sensing is less disruptive, more
effective, more efficient, and more likely to be accepted and used over
time.

5.1. Strengths and weaknesses of reviewed studies

The 35 reviewed studies applied passive sensing across domains of
health and wellness, demonstrating a degree of generalizability.
Multiple studies in the area of mental health showed it was feasible to
use passive sensing, including capturing sensitive data such as location
[35,56], in a domain surrounded by ethical issues related to privacy,
consent, and self-awareness. However, while people appear to accept
sharing personal data for research, they may be more reserved when
commercial interests are present [52,72]. At the same time, not all
domains were covered in the reviewed studies, raising questions about
the applicability of smartphone-based passive sensing for other dis-
eases, multiple comorbid conditions, and populations of older, cogni-
tively impaired, rural-dwelling, or vulnerable individuals. Overall, few
studies reported participants’ views on passive sensing and privacy,
raising concerns about acceptance outside academic research studies,
especially when sensitive sensors—microphone, GPS—are used [73].
The concern is especially high for research among ethnic minorities, for
whom privacy is an important but perhaps underappreciated concern
[74].

The sample size of most studies was acceptable for feasibility as-
sessment but not to demonstrate clinical value, as others have noted
about innovative health informatics research [27,75]. For example,
Fiordelli et al.’s [75] systematic literature review of mobile health
(mHealth) research between 2002 and 2012 found that the average
sample size decreased over the years, although the variety of study
designs has increased as more clinical studies have been performed over
time. The majority of the studies reviewed here were able to manage
the technological challenges related to sensors, data processing, and
security, although in many cases this was easier to accomplish when
studies were performed outside of routine clinical care or with healthy
volunteers, for example, university students enrolled in a class [63].

Overall, although the studies were innovative, as a whole they did
not demonstrate the use of passive sensing in actual clinical contexts
and did not measure or report changes in health outcomes, as most
studies were not interventional by nature. Studies generally dealt with
human-computer interaction (HCI) and technological issues rather than
addressing questions of clinical integration or scalability. Notably, only
18 papers (51%) were published in healthcare venues. This may explain
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why issues such as privacy or health outcomes were not comprehen-
sively addressed and sometimes ignored.

In terms of study reporting, technical elements of the studies were
usually sufficiently reported. While older studies often had missing or
inadequate information about settings and implementation, recent
studies tended to be more rigorous regarding these aspects—following a
global phenomenon in mHealth studies [76]—but for the most part
failed to systematically report challenges, especially ethics- and
privacy-related ones. Systematically reporting technological and
methodological challenges, as well as the views of participants on ethics
and privacy, would benefit the planning and execution of future studies
using passive sensing on smartphones.

5.2. Recommendations

5.2.1. Choosing the right passive sensing strategy
Our review showed many different ways to configure the data col-

lection, processing, and use of a smartphone-based passive sensing
system. For example, studies differed in the number and type of sensors
used, location and timing of data processing, and the nature of feedback
to users.

Interestingly, the number of sensors used in research studies has
been relatively stable over the years; the average sensor count across
studies was between 2.5 and 4 for any given year. As sensors have
become more energy-efficient and smartphone makers have added
dedicated chips to process sensor data, it has become more practical to
capture data from as many sensors as possible, for subsequent proces-
sing as needed. However, as more data streams are captured, it is im-
portant to derive new features—i.e., features that can be deduced from
raw sensor data, from simple mathematical calculations to the number
of speakers in a room—to facilitate machine learning [77]. These
computed features should match the problem at hand, such as speech
detection for people with schizophrenia, an indicator of social func-
tioning [35].

An important distinction between studies was the nature of the
input from participants. In a few cases, the approach required little to
no input from study participants, using unsupervised machine learning
algorithm classes, e.g., clustering. This can be used to learn the corre-
spondence between sensed data and an interpretation, such as how
geographical coordinates inform a lack of mobility [55]. In most cases,
however, participants were required to label sensed data in the study’s
initial stages, for example by tapping a button each time a cigarette was
smoked [52]. These labeled data points are especially helpful for
identifying outliers but may be less practical than completely passive
strategies.

In general, given the many possible strategies for passive sensing,
we recommend choosing a combination of data collection, processing,
and use that is based on project- and population-specific needs: a mix-
and-match or configural approach.

5.2.2. Personalized and similar-user models
A few of the studies reported null or weak correspondence between

sensed data and a phenomenon of interest. For example, in one study
the prediction of depression from sensor data yielded 60% accuracy
[61]. However, some have pointed out that what might be mis-
construed as inaccurate sensor data could be more valuable by applying
personal rather than population-based prediction models [55]. A par-
ticular pattern in one’s data may reveal something characteristic of that
user [78]: “different people will have different behavioral indicators of
mental health difficulties” [35]. The use of personal sensing mirrors n-
of-1 clinical trials and indeed, some have suggested the use of sensing
devices for n-of-1 trials [79].

An alternative to strictly individualized models is using “similar
user” models, or models grouping similar users to increase the volume
of data to be used by machine learning algorithms (e.g., [43]). While
these models may have lower accuracy than personalized models, they

are more generalizable and do not rely on as much user-labeled data.

5.2.3. Next steps for passive sensing
The advent of deep learning systems, combined with increasing

mobile computing power, suggest a future direction for passive sensing
for smartphones [80]. Initiatives such as Google’s TensorFlow and
Apple’s Core ML enable developers to train and use neural networks
directly on smartphones in order to perform data processing that for-
merly required a remote server, for example, offline language transla-
tion [81–83]. These emerging technologies may ultimately permit rapid
and context-sensitive passive sensing, machine learning, and just-in-
time personalized intervention delivery, especially if integrated within
existing frameworks for behavior change technologies (e.g., [84]).

Future work must also better address privacy, both conceptually and
practically. Most studies addressed data security via secure transmis-
sion or encryption, but future studies must also tackle other privacy
issues, for example, those related to the third-party use of personal data
or storage of data in databanks not controlled by device users [85].
Judging from the major barriers to personal health records adoption
[86], concerns about privacy may also deter widespread adoption of
passive sensing. Much like any new and spreading technology, future
studies must critically and comprehensively assess the acceptance and
longitudinal use of passive sensing systems [87] as well as any adverse

Table 7
Research opportunities and related informatics methods.

Health and Wellbeing

• Extension of smartphone-based passive sensing to new health and wellbeing
domains, such as caregiving (e.g., a notification sent when somebody wakes up)

• Testing the integration of passive sensing into clinical care, care coordination, and
telehealth

• Studies of passive sensing for population health management and public health

• Studies of passive sensing in the context of precision medicine

• Controlled trials of efficacy and comparative effectiveness of passive sensing-
enabled interventions on health outcomes

Policy and Privacy

• Understanding privacy and data ownership concerns and preferences among
potential end-users of smartphone-based passive sensing. Specific technology
topics for research on privacy include cross-application communication, cross-
device communication, and health data aggregators (e.g., Apple Health)

• Development and testing of new privacy and security protocols as well as strategies
for users to set custom privacy and security settings

• Implementation of a legal framework to address privacy and data ownership in
passive sensing on smartphones, especially for sensitive health domains such as
mental health

• Discussion of a legal framework to address failures in data protection strategies
(e.g., data leak), taking into account consumers, clinicians, and researchers

• Research on the effect of concerns about privacy on the acceptance and use of
passive sensing technologies

Analytic Models

• Comparison of personalized and similar-user models with general models across
several measured phenomena to assess the relative fitness of each model

• Comparison of the same models between devices to see if significant differences
exist

• Focus on higher-level data and clinical interpretations (e.g., bipolar cycles) as the
detection of lower-level data (e.g., sleep duration) matures

Human-Computer Interaction

• Analysis of cost effectiveness and efficacy of passive sensing on smartphones vs.
passive sensing with wearables and traditional methods such as paper-based
logging

• Replication of studies with larger and more diverse samples

• Combination of passive sensing technologies and other data sources for multiple
conditions, using various strategies including pulling composite data from a third
party, such as the operating system or middleware (e.g., [90])

• Integration with electronic health record (EHR) and personal health record (PHR)
products in the contexts of personal health information management and clinical
use of patient-generated data [91]

• Development and testing of clinician-facing interfaces to efficiently and effectively
utilize passively-acquired data

• Longitudinal research on the acceptance and use of passive sensing technology for
health, over time (months, years, decades)
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consequences.
A major general recommendation to address some of the above is-

sues is for technology specialists (e.g., informaticists, computer scien-
tists) to partner more effectively with clinical experts to identify and
address problems amenable to passive sensing [69,88,89]. Only
through these kinds of partnerships can novel technologies be designed
and assessed for practical value, scalability, and sustainability. This
partnership is especially important in specialty fields such as mental
health, where passive sensing is promising but has not reached its full
potential [26,69,88].

Recommendations for future research on passive sensing for health
and wellbeing are compiled in Table 7.

6. Limitations

Because of the topic of the review and the infancy of the field, pa-
pers may not have been captured in our search, despite the use of broad
terminology and brand names (e.g., Android, iPhone) in the search
queries. This review was unique in focusing on mobile phone systems,
because of the advantages described above, but consequently did not
incorporate the broader literature on passive sensing using wearable
devices such as activity trackers [75] or data collection from social
networks [17,18]. Given the small and heterogeneous set of reviewed
papers, we were unable to apply a systematic quality evaluation system
or draw conclusions about effect sizes using quantitative meta-analysis.

7. Conclusion

As demonstrated by the present systematic review, the field of
passive sensing for health and wellbeing shows early promise, despite

ongoing maturation. Several stakeholders may benefit from future ap-
plication of smartphone-based passive sensing: (1) users, who may in
the future be able to receive just-in-time or scheduled feedback on data
without much additional burden; (2) healthcare professionals, who may
be able to receive more accurate and timelier reports about their clients;
and (3) researchers, who may gain access to rich datasets with validated
data concerning participants’ behavior. The use of data that are patient-
specific, accurate, and minimally burdensome may power future
models of health and healthcare that are smarter, more connected, and
more personalized. However, there remain multiple gaps between this
vision and the present state of the art. In particular, additional research
is needed to address major issues such as clinical efficacy, integration of
newer analytic approaches including artificial intelligence (AI), privacy
issues, and implementation of passive sensing into actual clinical care.
Addressing these issues will require advances in both technology and in
the composition of research teams towards interdisciplinary colla-
borations of experts on technology, human-computer interaction, and
clinical care.

Conflict of interest

The authors declare that there is no conflict of interest.

Acknowledgments

RJH was supported by a grant from the National Institute on Aging
(NIA) of the US National Institutes of Health (NIH) (K01AG044439).
The content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIH. We thank the re-
viewers for helpful feedback.

Appendix A

A.1. Definition of terms related to passive sensing

Term Definition

Ecological Momentary
Assessment

“Repeated sampling of subject’s current behaviors and experiences in real time, in subjects’ natural environments”
[11]

mHealth (mobile Health) Mobile technologies for health or healthcare. This term includes technologies used by health professionals or
nonprofessionals [75]

Mobile sensing Term encompassing all portable technologies (phones, wearables, etc.) relying on sensors. Mobile sensing is not
limited to the individual but can be used to capture crowd phenomena, as well as environmental phenomena. May
require user input to capture data

Internet of things Communication of traditional physical objects (e.g., body weight scale, fridge) with other objects and systems (e.g.,
electronic health records) via the Internet [92]

Passive sensing Technique utilizing technologies capturing personal, crowd, or environmental data with little to no user input or
effort during data collection. Passive sensing can be mobile but can also be embedded in the environment (e.g.,
thermal sensors)

Pervasive/Ubiquitous
Technology

Computing devices that are present in the environment rather than as specific machines [93]; their interfaces
become “invisible, natural and everywhere” for the user [94]

Smartphone Cellular phones capable of performing advanced computing tasks whose features can be extended through
applications downloaded from the Internet [95]

V.P. Cornet, R.J. Holden Journal of Biomedical Informatics 77 (2018) 120–132

130



A.2. Summary of main external smartphone sensors used in passive sensing

Term Function Commercial Application Examples

Accelerometer &
Gyroscope

Determining the speed of movement in space as well as speed of
rotation of the device

Pedometer application. Activity tracking (e.g.,
Google Fit)

Antenna Detecting nearby cellular towers and relaying the signal to the
broadband processor for voice/SMS/data communication

Contextual messages when entering a certain area
(e.g., text messages received when roaming in
another country)

Bluetooth Detecting and communicating with other Bluetooth-enabled devices Wireless audio. Transmission of files between
phones

Global
Positioning
System (GPS)

Receiving information of four or more GPS satellites to calculate the
position of the device

Car navigation (e.g., Google Maps Navigation)

Light sensor Determining the amount of light reaching the device Automatic screen brightness adjustment
Microphone Capturing external sounds onto the device to for recording, processing,

or transmission [96]
Audio recorder. Phone calls

Proximity sensor Detecting the proximity between the front of the phone and any
obstacle, such as a human face

Turning off the phone screen during calls
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